3.133 \(\int \frac {x (a+b \sec ^{-1}(c x))}{\sqrt {d+e x^2}} \, dx\)

Optimal. Leaf size=132 \[ \frac {\sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right )}{e}+\frac {b c \sqrt {d} x \tan ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {c^2 x^2-1}}\right )}{e \sqrt {c^2 x^2}}-\frac {b x \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {c^2 x^2-1}}{c \sqrt {d+e x^2}}\right )}{\sqrt {e} \sqrt {c^2 x^2}} \]

[Out]

b*c*x*arctan((e*x^2+d)^(1/2)/d^(1/2)/(c^2*x^2-1)^(1/2))*d^(1/2)/e/(c^2*x^2)^(1/2)-b*x*arctanh(e^(1/2)*(c^2*x^2
-1)^(1/2)/c/(e*x^2+d)^(1/2))/e^(1/2)/(c^2*x^2)^(1/2)+(a+b*arcsec(c*x))*(e*x^2+d)^(1/2)/e

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 132, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {5236, 446, 105, 63, 217, 206, 93, 204} \[ \frac {\sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right )}{e}+\frac {b c \sqrt {d} x \tan ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {c^2 x^2-1}}\right )}{e \sqrt {c^2 x^2}}-\frac {b x \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {c^2 x^2-1}}{c \sqrt {d+e x^2}}\right )}{\sqrt {e} \sqrt {c^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*ArcSec[c*x]))/Sqrt[d + e*x^2],x]

[Out]

(Sqrt[d + e*x^2]*(a + b*ArcSec[c*x]))/e + (b*c*Sqrt[d]*x*ArcTan[Sqrt[d + e*x^2]/(Sqrt[d]*Sqrt[-1 + c^2*x^2])])
/(e*Sqrt[c^2*x^2]) - (b*x*ArcTanh[(Sqrt[e]*Sqrt[-1 + c^2*x^2])/(c*Sqrt[d + e*x^2])])/(Sqrt[e]*Sqrt[c^2*x^2])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 105

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Dist[b/f, Int[(a
+ b*x)^(m - 1)*(c + d*x)^n, x], x] - Dist[(b*e - a*f)/f, Int[((a + b*x)^(m - 1)*(c + d*x)^n)/(e + f*x), x], x]
 /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[Simplify[m + n + 1], 0] && (GtQ[m, 0] || ( !RationalQ[m] && (Su
mSimplerQ[m, -1] ||  !SumSimplerQ[n, -1])))

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 5236

Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))*(x_)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^(p +
1)*(a + b*ArcSec[c*x]))/(2*e*(p + 1)), x] - Dist[(b*c*x)/(2*e*(p + 1)*Sqrt[c^2*x^2]), Int[(d + e*x^2)^(p + 1)/
(x*Sqrt[c^2*x^2 - 1]), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {x \left (a+b \sec ^{-1}(c x)\right )}{\sqrt {d+e x^2}} \, dx &=\frac {\sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right )}{e}-\frac {(b c x) \int \frac {\sqrt {d+e x^2}}{x \sqrt {-1+c^2 x^2}} \, dx}{e \sqrt {c^2 x^2}}\\ &=\frac {\sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right )}{e}-\frac {(b c x) \operatorname {Subst}\left (\int \frac {\sqrt {d+e x}}{x \sqrt {-1+c^2 x}} \, dx,x,x^2\right )}{2 e \sqrt {c^2 x^2}}\\ &=\frac {\sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right )}{e}-\frac {(b c x) \operatorname {Subst}\left (\int \frac {1}{\sqrt {-1+c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{2 \sqrt {c^2 x^2}}-\frac {(b c d x) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {-1+c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{2 e \sqrt {c^2 x^2}}\\ &=\frac {\sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right )}{e}-\frac {(b x) \operatorname {Subst}\left (\int \frac {1}{\sqrt {d+\frac {e}{c^2}+\frac {e x^2}{c^2}}} \, dx,x,\sqrt {-1+c^2 x^2}\right )}{c \sqrt {c^2 x^2}}-\frac {(b c d x) \operatorname {Subst}\left (\int \frac {1}{-d-x^2} \, dx,x,\frac {\sqrt {d+e x^2}}{\sqrt {-1+c^2 x^2}}\right )}{e \sqrt {c^2 x^2}}\\ &=\frac {\sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right )}{e}+\frac {b c \sqrt {d} x \tan ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{e \sqrt {c^2 x^2}}-\frac {(b x) \operatorname {Subst}\left (\int \frac {1}{1-\frac {e x^2}{c^2}} \, dx,x,\frac {\sqrt {-1+c^2 x^2}}{\sqrt {d+e x^2}}\right )}{c \sqrt {c^2 x^2}}\\ &=\frac {\sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right )}{e}+\frac {b c \sqrt {d} x \tan ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{e \sqrt {c^2 x^2}}-\frac {b x \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {-1+c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{\sqrt {e} \sqrt {c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.24, size = 211, normalized size = 1.60 \[ \frac {\sqrt {d+e x^2} \left (a+b \sec ^{-1}(c x)\right )}{e}-\frac {b x \sqrt {1-\frac {1}{c^2 x^2}} \left (\sqrt {c^2} \sqrt {e} \sqrt {c^2 d+e} \sqrt {\frac {c^2 \left (d+e x^2\right )}{c^2 d+e}} \sinh ^{-1}\left (\frac {c \sqrt {e} \sqrt {c^2 x^2-1}}{\sqrt {c^2} \sqrt {c^2 d+e}}\right )+c^3 \sqrt {d} \sqrt {d+e x^2} \tan ^{-1}\left (\frac {\sqrt {d} \sqrt {c^2 x^2-1}}{\sqrt {d+e x^2}}\right )\right )}{c^2 e \sqrt {c^2 x^2-1} \sqrt {d+e x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*ArcSec[c*x]))/Sqrt[d + e*x^2],x]

[Out]

(Sqrt[d + e*x^2]*(a + b*ArcSec[c*x]))/e - (b*Sqrt[1 - 1/(c^2*x^2)]*x*(Sqrt[c^2]*Sqrt[e]*Sqrt[c^2*d + e]*Sqrt[(
c^2*(d + e*x^2))/(c^2*d + e)]*ArcSinh[(c*Sqrt[e]*Sqrt[-1 + c^2*x^2])/(Sqrt[c^2]*Sqrt[c^2*d + e])] + c^3*Sqrt[d
]*Sqrt[d + e*x^2]*ArcTan[(Sqrt[d]*Sqrt[-1 + c^2*x^2])/Sqrt[d + e*x^2]]))/(c^2*e*Sqrt[-1 + c^2*x^2]*Sqrt[d + e*
x^2])

________________________________________________________________________________________

fricas [A]  time = 0.88, size = 869, normalized size = 6.58 \[ \left [\frac {b c \sqrt {-d} \log \left (\frac {{\left (c^{4} d^{2} - 6 \, c^{2} d e + e^{2}\right )} x^{4} - 8 \, {\left (c^{2} d^{2} - d e\right )} x^{2} - 4 \, \sqrt {c^{2} x^{2} - 1} {\left ({\left (c^{2} d - e\right )} x^{2} - 2 \, d\right )} \sqrt {e x^{2} + d} \sqrt {-d} + 8 \, d^{2}}{x^{4}}\right ) + b \sqrt {e} \log \left (8 \, c^{4} e^{2} x^{4} + c^{4} d^{2} - 6 \, c^{2} d e + 8 \, {\left (c^{4} d e - c^{2} e^{2}\right )} x^{2} - 4 \, {\left (2 \, c^{3} e x^{2} + c^{3} d - c e\right )} \sqrt {c^{2} x^{2} - 1} \sqrt {e x^{2} + d} \sqrt {e} + e^{2}\right ) + 4 \, \sqrt {e x^{2} + d} {\left (b c \operatorname {arcsec}\left (c x\right ) + a c\right )}}{4 \, c e}, \frac {2 \, b c \sqrt {d} \arctan \left (-\frac {\sqrt {c^{2} x^{2} - 1} {\left ({\left (c^{2} d - e\right )} x^{2} - 2 \, d\right )} \sqrt {e x^{2} + d} \sqrt {d}}{2 \, {\left (c^{2} d e x^{4} + {\left (c^{2} d^{2} - d e\right )} x^{2} - d^{2}\right )}}\right ) + b \sqrt {e} \log \left (8 \, c^{4} e^{2} x^{4} + c^{4} d^{2} - 6 \, c^{2} d e + 8 \, {\left (c^{4} d e - c^{2} e^{2}\right )} x^{2} - 4 \, {\left (2 \, c^{3} e x^{2} + c^{3} d - c e\right )} \sqrt {c^{2} x^{2} - 1} \sqrt {e x^{2} + d} \sqrt {e} + e^{2}\right ) + 4 \, \sqrt {e x^{2} + d} {\left (b c \operatorname {arcsec}\left (c x\right ) + a c\right )}}{4 \, c e}, \frac {b c \sqrt {-d} \log \left (\frac {{\left (c^{4} d^{2} - 6 \, c^{2} d e + e^{2}\right )} x^{4} - 8 \, {\left (c^{2} d^{2} - d e\right )} x^{2} - 4 \, \sqrt {c^{2} x^{2} - 1} {\left ({\left (c^{2} d - e\right )} x^{2} - 2 \, d\right )} \sqrt {e x^{2} + d} \sqrt {-d} + 8 \, d^{2}}{x^{4}}\right ) + 2 \, b \sqrt {-e} \arctan \left (\frac {{\left (2 \, c^{2} e x^{2} + c^{2} d - e\right )} \sqrt {c^{2} x^{2} - 1} \sqrt {e x^{2} + d} \sqrt {-e}}{2 \, {\left (c^{3} e^{2} x^{4} - c d e + {\left (c^{3} d e - c e^{2}\right )} x^{2}\right )}}\right ) + 4 \, \sqrt {e x^{2} + d} {\left (b c \operatorname {arcsec}\left (c x\right ) + a c\right )}}{4 \, c e}, \frac {b c \sqrt {d} \arctan \left (-\frac {\sqrt {c^{2} x^{2} - 1} {\left ({\left (c^{2} d - e\right )} x^{2} - 2 \, d\right )} \sqrt {e x^{2} + d} \sqrt {d}}{2 \, {\left (c^{2} d e x^{4} + {\left (c^{2} d^{2} - d e\right )} x^{2} - d^{2}\right )}}\right ) + b \sqrt {-e} \arctan \left (\frac {{\left (2 \, c^{2} e x^{2} + c^{2} d - e\right )} \sqrt {c^{2} x^{2} - 1} \sqrt {e x^{2} + d} \sqrt {-e}}{2 \, {\left (c^{3} e^{2} x^{4} - c d e + {\left (c^{3} d e - c e^{2}\right )} x^{2}\right )}}\right ) + 2 \, \sqrt {e x^{2} + d} {\left (b c \operatorname {arcsec}\left (c x\right ) + a c\right )}}{2 \, c e}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsec(c*x))/(e*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(b*c*sqrt(-d)*log(((c^4*d^2 - 6*c^2*d*e + e^2)*x^4 - 8*(c^2*d^2 - d*e)*x^2 - 4*sqrt(c^2*x^2 - 1)*((c^2*d
- e)*x^2 - 2*d)*sqrt(e*x^2 + d)*sqrt(-d) + 8*d^2)/x^4) + b*sqrt(e)*log(8*c^4*e^2*x^4 + c^4*d^2 - 6*c^2*d*e + 8
*(c^4*d*e - c^2*e^2)*x^2 - 4*(2*c^3*e*x^2 + c^3*d - c*e)*sqrt(c^2*x^2 - 1)*sqrt(e*x^2 + d)*sqrt(e) + e^2) + 4*
sqrt(e*x^2 + d)*(b*c*arcsec(c*x) + a*c))/(c*e), 1/4*(2*b*c*sqrt(d)*arctan(-1/2*sqrt(c^2*x^2 - 1)*((c^2*d - e)*
x^2 - 2*d)*sqrt(e*x^2 + d)*sqrt(d)/(c^2*d*e*x^4 + (c^2*d^2 - d*e)*x^2 - d^2)) + b*sqrt(e)*log(8*c^4*e^2*x^4 +
c^4*d^2 - 6*c^2*d*e + 8*(c^4*d*e - c^2*e^2)*x^2 - 4*(2*c^3*e*x^2 + c^3*d - c*e)*sqrt(c^2*x^2 - 1)*sqrt(e*x^2 +
 d)*sqrt(e) + e^2) + 4*sqrt(e*x^2 + d)*(b*c*arcsec(c*x) + a*c))/(c*e), 1/4*(b*c*sqrt(-d)*log(((c^4*d^2 - 6*c^2
*d*e + e^2)*x^4 - 8*(c^2*d^2 - d*e)*x^2 - 4*sqrt(c^2*x^2 - 1)*((c^2*d - e)*x^2 - 2*d)*sqrt(e*x^2 + d)*sqrt(-d)
 + 8*d^2)/x^4) + 2*b*sqrt(-e)*arctan(1/2*(2*c^2*e*x^2 + c^2*d - e)*sqrt(c^2*x^2 - 1)*sqrt(e*x^2 + d)*sqrt(-e)/
(c^3*e^2*x^4 - c*d*e + (c^3*d*e - c*e^2)*x^2)) + 4*sqrt(e*x^2 + d)*(b*c*arcsec(c*x) + a*c))/(c*e), 1/2*(b*c*sq
rt(d)*arctan(-1/2*sqrt(c^2*x^2 - 1)*((c^2*d - e)*x^2 - 2*d)*sqrt(e*x^2 + d)*sqrt(d)/(c^2*d*e*x^4 + (c^2*d^2 -
d*e)*x^2 - d^2)) + b*sqrt(-e)*arctan(1/2*(2*c^2*e*x^2 + c^2*d - e)*sqrt(c^2*x^2 - 1)*sqrt(e*x^2 + d)*sqrt(-e)/
(c^3*e^2*x^4 - c*d*e + (c^3*d*e - c*e^2)*x^2)) + 2*sqrt(e*x^2 + d)*(b*c*arcsec(c*x) + a*c))/(c*e)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arcsec}\left (c x\right ) + a\right )} x}{\sqrt {e x^{2} + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsec(c*x))/(e*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsec(c*x) + a)*x/sqrt(e*x^2 + d), x)

________________________________________________________________________________________

maple [F]  time = 3.50, size = 0, normalized size = 0.00 \[ \int \frac {x \left (a +b \,\mathrm {arcsec}\left (c x \right )\right )}{\sqrt {e \,x^{2}+d}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arcsec(c*x))/(e*x^2+d)^(1/2),x)

[Out]

int(x*(a+b*arcsec(c*x))/(e*x^2+d)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {\frac {1}{2} \, {\left ({\left (\frac {c^{4} {\left (\frac {2 \, \sqrt {e x^{2} + d} e}{c^{4}} + \frac {e^{2} \log \left (\frac {\sqrt {e x^{2} + d} c^{2} - \sqrt {c^{2} d + e} c}{\sqrt {e x^{2} + d} c^{2} + \sqrt {c^{2} d + e} c}\right )}{\sqrt {c^{2} d + e} c^{5}}\right )} \log \relax (c)}{e^{2}} - \frac {c^{2} d {\left (\frac {\log \left (\frac {\sqrt {e x^{2} + d} c^{2} - \sqrt {c^{2} d + e} c}{\sqrt {e x^{2} + d} c^{2} + \sqrt {c^{2} d + e} c}\right )}{\sqrt {c^{2} d + e} c} - \frac {\log \left (\frac {\sqrt {e x^{2} + d} - \sqrt {d}}{\sqrt {e x^{2} + d} + \sqrt {d}}\right )}{c^{2} \sqrt {d}}\right )}}{e} + \frac {c^{4} {\left (\frac {2 \, \sqrt {e x^{2} + d} e}{c^{4}} + \frac {e^{2} \log \left (\frac {\sqrt {e x^{2} + d} c^{2} - \sqrt {c^{2} d + e} c}{\sqrt {e x^{2} + d} c^{2} + \sqrt {c^{2} d + e} c}\right )}{\sqrt {c^{2} d + e} c^{5}}\right )}}{e^{2}} + \frac {c d \log \left (\frac {\sqrt {e x^{2} + d} c^{2} - \sqrt {c^{2} d + e} c}{\sqrt {e x^{2} + d} c^{2} + \sqrt {c^{2} d + e} c}\right )}{\sqrt {c^{2} d + e} e} - \frac {\log \relax (c) \log \left (\frac {\sqrt {e x^{2} + d} c^{2} - \sqrt {c^{2} d + e} c}{\sqrt {e x^{2} + d} c^{2} + \sqrt {c^{2} d + e} c}\right )}{\sqrt {c^{2} d + e} c} - \frac {\log \left (\frac {\sqrt {e x^{2} + d} c^{2} - \sqrt {c^{2} d + e} c}{\sqrt {e x^{2} + d} c^{2} + \sqrt {c^{2} d + e} c}\right )}{\sqrt {c^{2} d + e} c} + 2 \, \int \frac {x \log \relax (x)}{\sqrt {e x^{2} + d}}\,{d x}\right )} e - 2 \, \sqrt {e x^{2} + d} \arctan \left (\sqrt {c x + 1} \sqrt {c x - 1}\right )\right )} b}{e} + \frac {\sqrt {e x^{2} + d} a}{e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsec(c*x))/(e*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

-(e*integrate((c^2*e*x^3*log(c) - e*x*log(c) + ((c^2*log(c) + c^2)*e*x^3 + (c^2*d - e*log(c))*x)*e^(log(c*x +
1) + log(c*x - 1)) + (c^2*e*x^3 - e*x + (c^2*e*x^3 - e*x)*e^(log(c*x + 1) + log(c*x - 1)))*log(x))/((c^2*e*x^2
 + (c^2*e*x^2 - e)*e^(log(c*x + 1) + log(c*x - 1)) - e)*sqrt(e*x^2 + d)), x) - sqrt(e*x^2 + d)*arctan(sqrt(c*x
 + 1)*sqrt(c*x - 1)))*b/e + sqrt(e*x^2 + d)*a/e

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x\,\left (a+b\,\mathrm {acos}\left (\frac {1}{c\,x}\right )\right )}{\sqrt {e\,x^2+d}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*acos(1/(c*x))))/(d + e*x^2)^(1/2),x)

[Out]

int((x*(a + b*acos(1/(c*x))))/(d + e*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x \left (a + b \operatorname {asec}{\left (c x \right )}\right )}{\sqrt {d + e x^{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*asec(c*x))/(e*x**2+d)**(1/2),x)

[Out]

Integral(x*(a + b*asec(c*x))/sqrt(d + e*x**2), x)

________________________________________________________________________________________